Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tian-Tian Pan, Jian-Rong Su and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.107$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2-hydroxybenzoato- κ O)bis(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium(II) monohydrate

In the crystal structure of the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2-}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cd}^{\text {II }}$ ion is coordinated by two $1,10-$ phenanthroline (phen) ligands and two 2-hydroxybenzoate anions, resulting in a distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedral coordination geometry. A partially overlapped arrangement and short face-to-face separation of 3.47 (2) \AA indicate the existence of $\pi-\pi$ stacking between parallel phen ligands.

Comment

Intermolecular $\pi-\pi$ stacking is an important interaction and is correlated with electron-transfer processes in some biological systems (Deisenhofer \& Michel, 1989). As part of investigation into the nature of $\pi-\pi$ stacking in metal complexes (Chen et al., 2003), we report here the structure of the title $\mathrm{Cd}^{\mathrm{II}}$ complex, (I).

(I)

The crystal structure of (I) consists of $\mathrm{Cd}^{\mathrm{II}}$ complexes and uncoordinated water molecules. The $\mathrm{Cd}^{\mathrm{II}}$ ion assumes a distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedral geometry, formed by two 1,10phenanthroline (phen) ligands and two 2-hydroxybenzoate (2HBA) anions (Fig. 1). This geometry is similar to that found in the $\mathrm{Cd}^{\mathrm{II}}$ complexes with $4-\mathrm{HBA}$ anions (Pan et al., 2006). The two phen ligands chelate to the $\mathrm{Cd}^{\mathrm{II}}$ ion in a cis configuration, being roughly perpendicular to each other with a dihedral angle of 79.77 (6) ${ }^{\circ}$.

A partially overlapped arrangement is observed between parallel phen ligands (Fig. 2), in which the face-to-face separation of 3.47 (2) A strongly suggests the existence of $\pi-\pi$ stacking between them. Within the 2-HBA anions, the hydroxyl groups are intramolecularly hydrogen bonded with the carboxyl groups. The uncoordinated water molecule links to the complexes via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2).

Experimental

A water/ethanol solution ($20 \mathrm{ml}, 1: 1$) containing $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($0.62 \mathrm{~g}, 2 \mathrm{mmol}$), 2-hydroxybenzoic acid ($0.32 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(0.21 \mathrm{~g}, 2 \mathrm{mmol})$ and phen $(0.40 \mathrm{~g}, 2 \mathrm{mmol})$ was refluxed for 3 h . After
cooling to room temperature, the solution was filtered. Single crystals of (I) were obtained from the filtrate after 2 weeks.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{H} 2 \mathrm{O}$
$M_{r}=765.04$
Monoclinic, $P 2_{1} / n$
$a=10.838$ (3) А
$b=25.941$ (5) A
$c=11.698$ (3) \AA
$\beta=93.119$ (11) ${ }^{\circ}$
$V=3284.0(13) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
$T_{\text {min }}=0.791, T_{\text {max }}=0.881$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0612 P)^{2}\right. \\
& \quad+0.4959 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.62 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.107$
$S=1.12$
7511 reflections
417 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.547 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Chunk, colorless
$0.32 \times 0.19 \times 0.16 \mathrm{~mm}$

32337 measured reflections 7511 independent reflections 5999 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cd}-\mathrm{O} 1 B$	$2.273(6)$	$\mathrm{Cd}-\mathrm{N} 2$	$2.428(2)$
$\mathrm{Cd}-\mathrm{O} 2 A$	$2.351(5)$	$\mathrm{Cd}-\mathrm{N} 3$	$2.415(2)$
$\mathrm{Cd}-\mathrm{O} 4$	$2.249(2)$	$\mathrm{Cd}-\mathrm{N} 4$	$2.399(2)$
$\mathrm{Cd}-\mathrm{N} 1$	$2.363(2)$		
$\mathrm{O} 1 B-\mathrm{Cd}-\mathrm{O} 4$	$87.20(17)$	$\mathrm{O} 4-\mathrm{Cd}-\mathrm{N} 1$	$111.27(8)$
$\mathrm{O} 1 B-\mathrm{Cd}-\mathrm{N} 1$	$116.61(15)$	$\mathrm{O} 4-\mathrm{Cd}-\mathrm{N} 2$	$83.82(9)$
$\mathrm{O} 1 B-\mathrm{Cd}-\mathrm{N} 2$	$170.59(16)$	$\mathrm{O} 4-\mathrm{Cd}-\mathrm{N} 3$	$149.25(10)$
$\mathrm{O} 1 B-\mathrm{Cd}-\mathrm{N} 3$	$103.13(15)$	$\mathrm{O} 4-\mathrm{Cd}-\mathrm{N} 4$	$83.10(9)$
$\mathrm{O} 1 B-\mathrm{Cd}-\mathrm{N} 4$	$87.58(15)$	$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 2$	$69.60(7)$
$\mathrm{O} 2 A-\mathrm{Cd}-\mathrm{O} 4$	$118.42(16)$	$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 3$	$90.12(8)$
$\mathrm{O} 2 A-\mathrm{Cd}-\mathrm{N} 1$	$83.65(14)$	$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 4$	$151.53(8)$
$\mathrm{O} 2 A-\mathrm{Cd}-\mathrm{N} 2$	$150.56(15)$	$\mathrm{N} 2-\mathrm{Cd}-\mathrm{N} 3$	$83.41(8)$
$\mathrm{O} 2 A-\mathrm{Cd}-\mathrm{N} 3$	$84.60(14)$	$\mathrm{N} 2-\mathrm{Cd}-\mathrm{N} 4$	$88.57(7)$
$\mathrm{O} 2 A-\mathrm{Cd}-\mathrm{N} 4$	$111.80(14)$	$\mathrm{N} 3-\mathrm{Cd}-\mathrm{N} 4$	$68.73(8)$

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W A-\mathrm{H} 1 A \cdots \mathrm{O} 2 A$	0.98	2.18	$3.145(9)$	168
O1 $W B-\mathrm{H} 1 B \cdots \mathrm{O}^{\prime} B$	0.94	2.03	$2.969(10)$	172
O1 $W B-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.05	$3.036(8)$	178
O3A-H3A $\cdots \mathrm{O} 1 A$	0.82	1.80	$2.533(10)$	148
O3B-H3B \cdots O1B	0.82	1.88	$2.563(10)$	139
O6-H6 $A \cdots$ O5	0.82	1.84	$2.573(5)$	148

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.

One 2-HBA anion is disordered over two sites. Occupancies were refined and converged to 0.506 (4) and 0.494 (4), respectively; in the final cycles of refinement they were fixed at 0.5 . The uncoordinated water molecule is also disordered, and the occupancy factors were fixed at 0.5 for each component. Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative

Figure 1
The molecular structure of (I) with 25% probability displacement ellipsoids (arbitrary spheres for H atoms). Suffixes a and b indicate the two disordered components.

Figure 2
$\pi-\pi$ Stacking between parallel N3-phen and N3 ${ }^{\mathrm{ii}}$-phen ligands [symmetry code: (ii) $1-x, 1-y, 1-z$]. One disordered 2-HBA component has been omitted for clarity. The disordered water molecules have been omitted.
positions, $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. Other H atoms were placed in calculated positions, $\mathrm{C}-\mathrm{H}=0.93$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for

metal-organic papers

Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Pan, T.-T., Liu, J.-G. \& Xu, D.-J. (2006). Acta Cryst. E62, m1597-m1599
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC and Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX, USA 77381-5209. Rigaku, Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

